Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(4): 3251-3277, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38666934

RESUMO

Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory miRNA-146a-5p, compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (PERK, IRE1, ATF6, and XBP1), increased the number of mitochondria, and reduced the expression of Fis-1 and Parkin, thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.

2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982806

RESUMO

The purpose of this study was to describe the use of PLDLA/TPU matrix enriched with cyclosporine A (CsA) as a therapeutic platform in horses with immune-mediated keratitis (IMMK) with an in vitro evaluation CsA release and degradation of the blend as well as determination of the safety and efficacy of that platform used in the animal model. The kinetics of the CsA release from matrices constructed of thermoplastic polyurethane (TPU) polymer and a copolymer of L-lactide with DL-lactide (PLDLA) (80:20) in the TPU (10%) and a PLDL (90%) polymer blend were studied. Moreover, we used the STF (Simulated Tear Fluid) at 37 °C as a biological environment to assess the CsA release and its degradation. Additionally, the platform described above was injected subconjunctival in the dorsolateral quadrant of the globe after standing sedation of horses with diagnosed superficial and mid-stromal IMMK. The obtained results indicated that the CsA release rate in the fifth week of the study increased significantly by the value of 0.3% compared to previous weeks. In all of the cases, the TPU/PLA doped with 12 mg of the CsA platform effectively reduced the clinical symptoms of keratitis, leading to the complete remission of the corneal opacity and infiltration four weeks post-injection. The results from this study showed that the PLDLA/TPU matrix enriched with the CsA platform was well tolerated by the equine model and effective in treating superficial and mid-stromal IMMK.


Assuntos
Ciclosporina , Ceratite , Cavalos , Animais , Ciclosporina/uso terapêutico , Poliuretanos , Ceratite/tratamento farmacológico , Ceratite/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...